Sunday, February 28, 2021

When the lights went out in Texas

 

It got cold here in February. Sometime during the day or evening of the 5th the temperature dropped below 32F. It didn’t reach 32F again until late afternoon on the 19th. In between, St. Louis set new record low maximum temperatures of 8F on the 14th and 4F on the 15th. Belying the too-cold-to-snow theory, on the 15th, the coldest day of the 2020-2021 winter season with that record low maximum temperature of 4F, we also received the season’s largest snowfall event of 5.7 inches.

 

Outside of St. Louis, none of this mattered. Instead, our attention fell on the much more serious problems that the same storm brought to Texas, Oklahoma, Arkansas, and parts of the Deep South. The storm demonstrated how weather events have disproportionate effects on areas where they rarely occur.

 

St. Louisans experience temperatures around 0F every winter and around 100F every summer; building codes reflect this reality, as does the prevalence of air-conditioning for summer heat waves. I think fewer people have backup non-electric means of heating as have air-conditioning, but some people have wood stoves and wood-burning fireplaces, and natural gas heating and cooking are fairly common. Natural gas fireplaces are becoming more common as well. If Mike and I lose electric service in winter, we’ll still have hot water because we have a gas water heater, and we have a wood stove for heating and some cooking. (We used the wood stove to provide more heat than we wanted to pay for during the worst of the cold wave, which also served as one of our contributions to our electric utility’s request to conserve electricity during that time.) Beyond that, we have stored rainwater and a water filter to provide clean water and a supply of canned and dry foods along with a manual can opener. This meant we didn’t need to leave the house until the roads were cleared of snow and ice and the temperature wasn’t as cold.

 

South of us, on the other hand, storms of this magnitude rarely occur. Texas last experienced a cold wave like this in 2011 and before that in 1989. Most Texans don’t have enough practice with severe cold to have developed the home infrastructure to manage it. Wood stoves don’t make sense in a climate where the lowest average high is 56F (that’s for Dallas/Fort Worth). Even the cheaper forms of non-electric heating like a kerosene heater would get little enough use that few people probably have them. While many people have non-electric barbeque equipment, the extreme cold, snow, and ice made it impractical to use them for heating water or cooking. And heating water implies that you have water; the lack of electricity, whether at home or in water utilities, led to a lack of water when the pipes froze and broke and the water pumps shut off.

 

When heat waves strike locations which normally experience relatively cool summers, the same lack of practice and home infrastructure results in higher death rates than for places farther south where residents contend with heat waves every summer. In the US, a good example is the difference in deaths between Chicago and St. Louis in the heat wave of 1980. Something like 100 people died of the heat in the St. Louis region. In Chicago, on the other hand, at least 700 people died. The biggest single factor accounting for the difference was the higher percentage of air-conditioned residences in St. Louis as opposed to Chicago. Most Chicagoans didn’t have air conditioning because they so rarely needed it, while most St. Louisans did. A similar lack of air conditioning due to usually mild summers led to an estimated 30,000-50,000 people dying of heat-related causes during the European heat wave of August 2003.

 

Infrastructure deficiencies cause problems on larger scales than just that of a single residence. The cold wave of February amply demonstrated how Texas’ electricity and water infrastructure failed in the face of the extreme cold conditions.

 

In the immediate aftermath, the usual fingers pointed at the usual targets. Fossil fuel advocates pointed to wind turbines covered in ice that had to be shut down. Renewable energy advocates countered with fossil fuel plants that were forced offline because equipment essential to operating the plants froze. Advocates for public utilities and regulation noted that under Texas’ privatization and deregulation of electrical generation and distribution, Texas’ electric utilities and electrical consumers alike have no incentive to take on the high cost of, for instance, properly insulating electrical plants and their equipment so that the plants can continue to supply electricity during a cold wave of this magnitude. Since the vast majority of Texas had declared energy independence from the rest of the US, almost all of the Texas electrical grid stands alone. When the Texas grid couldn’t supply the amount of electricity needed to match demand, it could not open a connection to either of the other two large-scale grids in the US to mitigate the severity of the situation. Not that those grids had a lot of spare capacity at the time, since the cold wave was as severe and expansive as it was; their own customers were already taxing the grid with their own demands.

 

It wasn’t till about a week after the worst of the event, as I was mulling over what I wanted to say in this post, that I fully understood the implications of the event. With considerable interest I read the stories about what happened when it became apparent that the grid’s carefully balanced condition was failing as plant after plant dropped offline while demand continued to increase. One of the people on the scene was quoted as saying that the entire Texas stand-alone grid was “seconds to minutes” away from catastrophic failure. He and others realized that the only solution was to drop off huge chunks of demand in order to buy time to stabilize the system to the remaining demand and then to slowly add back other chunks of demand as plants could be made operational again. It’s similar to how your local electrical utility manages outages from a severe storm: if you’re lucky, the circuit you’re on is added back quickly; otherwise you have to wait until the utility can safely add the demand from your circuit into its distribution system.

 

The “catastrophic failure” potential he described, however, would have been far more severe than anything the vast majority of us have ever experienced. The closest equivalent would be the January 1998 ice storm in Maine and in Quebec in Canada. Some communities had no electricity for two weeks or longer. This being Maine and Canada, most people had non-electric means to withstand winter conditions, so they managed well enough. The limited extent of the storm meant that electric utilities could respond relatively quickly and effectively. Even so, it would have been a long two weeks without electricity for those who went through it.

 

In the case of Texas in mid-February, the person interviewed described the potential failure as being very wide-ranging. Electrical equipment relied on by most of the people in Texas would have failed past the point of quick and easy repair, if it could be repaired at all, according to what I understood. Texas has the second highest population of all states in the US, estimated at 29 million in 2019. Of its major cities, only El Paso, population roughly 700,000, is not on the Texas stand-alone grid; its electrical system is part of the western grid. A very small area of extreme eastern Texas belongs to the eastern grid, but there are no major cities in this area. Had the electrical grid completely failed, as it was within seconds to minutes of doing, something like 27 to 28 million people would have lost electrical service for at least days, if not weeks to months. Electric utilities, whether public or private, don’t keep a lot of skilled grid repair people on staff, instead relying on compacts that send those employees to other cities and states in the event of widespread outages that the local utility cannot handle on its own. I suspect that an effort to repair a catastrophic failure of Texas’ grid would have absorbed most of the skilled electric utility workers in the entire US, leaving the rest of the country at risk from the smaller-scale severe weather events that the US is prone to.

 

I don’t think that all of those 27 to 28 million people would have been willing to remain in their residences without food or water for very long. Besides being the second most populous state, Texas is also the second largest state in area. The logistics of getting relief to everyone in the state who would have needed it is staggering to contemplate. Failing that, it’s reasonable to suppose that most Texans with a car and enough gasoline to make it to a place with electrical service would have set out for said place. Can you say “refugee?”

 

I bring this up because it’s a particular case of a larger problem with infrastructure in the US. Those who rate the quality of the US infrastructure – the transportation, electrical, fossil fuel, water, and other hardscape systems that we all depend on to supply our daily needs – rate it quite poorly. Most of our infrastructure needs infusions of cash, material, and labor to bring it up to a satisfactory level. However, the will to provide those things seems to be lacking. We’d like to have an infrastructure in good repair, but we’re unwilling to pay to repair the infrastructure we already have. So we have a patchy network of shiny new infrastructure in places currently being built up, while the already-existing infrastructure slowly, and sometimes not so slowly, decays. What’s shiny and new now will need repair later on as it wears out, but we don’t even keep up what we already have.

 

Can we in fact keep all of our current infrastructure in good repair, much less the new infrastructure we insist on adding? You’ll have to wait for next month’s blog post for my thoughts on that. It’ll probably be the post after that before I return to gardening. In the meantime, I’ll be starting seeds this week and watching for the first daffodil blooms. Happy March to all of you!

No comments:

Post a Comment